Focus Areas

Machine Learning, Big Data, Cloud and Parallel Computing

Arthur Samuel, an American pioneer in the field of computer gaming and artificial intelligence, coined the term “Machine Learning” in 1959 while at IBM. Evolved from the study of pattern recognition and computational learning theory in artificial intelligence, machine learning explores the study and construction of algorithms that can learn from and make predictions on data – such algorithms overcome following strictly static program instructions by making data-driven predictions or decisions, through building a model from sample inputs. Machine learning is employed in a range of computing tasks where designing and programming explicit algorithms with good performance is difficult or infeasible; example applications include email filtering, detection of network intruders or malicious insiders working towards a data breach, optical character recognition (OCR), learning to rank, and computer vision.

Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. Big data challenges include capturing data, data storage, data analysis, search, sharing, transfer, visualization, querying, updating and information privacy.

Cloud computing is an information technology (IT) paradigm, a model for enabling ubiquitous access to shared pools of configurable resources (such as computer networks, servers, storage, applications and services), which can be rapidly provisioned with minimal management effort, often over the Internet. Cloud computing allows users and enterprises with various computing capabilities to store and process data either in a privately-owned cloud, or on a third-party server located in a data center, thus making data-accessing mechanisms more efficient and reliable. Cloud computing relies on sharing of resources to achieve coherence and economy of scale, similar to a utility.

Parallel computing is a type of computation in which many calculations or the execution of processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has been employed for many years, mainly in high-performance computing, but interest in it has grown lately due to the physical constraints preventing frequency scaling. As power consumption (and consequently heat generation) by computers has become a concern in recent years, parallel computing has become the dominant paradigm in computer architecture, mainly in the form of multi-core processors.

Source: Wikipedia, the Free Encyclopedia, 

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s